

SIMULATING N-BODY SYSTEMS

Simon Donné, November 9th 2016

OVERVIEW OF THE PRESENTATION

Problems and solutions

Full-on simulation

Attraction fields

Octree approximation

Out of memory problems

PROBLEMS AND SOLUTIONS

Every particle influences every other particle

6 particles: 15 interactions

81'920 particles: 3'355'402'240 interactions

Calculating them all is a lot of work: $O(n^2)$!

PROBLEMS AND SOLUTIONS

All implementation is done using Quasar

An in-house developed programming language GPU programming through automatic code generation Automatic optimization of kernel parameters

Perfect for prototyping! Incremental implementation times given for all methods

FULL-ON SIMULATION

The ground-truth approach Calculate all n(n-1) attractions

ATTRACTION FIELDS

Each point throws an attraction field in the space around it We approximate these attraction fields

Attempt 1: DxDxD voxel cube

For each voxel, calculate the effects of all points on it Then each point simply looks up its location in the cube

Calculating the field: O(nD³) TOO SLOW

Field lookup: O(n)

Attempt 2: a hierarchy of voxel cubes (height h, subdivision D)

we use h=9, D=2

At each level, we calculate the exerted attraction on all voxels we are not in, and continue recursively into the voxel we *are* in.

Calculating the field: $O(h(D^3-1)n)$

Calculating the field: O(hn)

Attempt 2: a hierarchy of nonuniform voxel cubes

The voxel cubes are no longer uniform

Attempt 3: a hierarchy of nonuniform voxel cubes The voxel cubes are no longer uniform

Nice properties:

Calculating the subdivisions: O(nDh)

Calculating the field: $O(h(D^3-1)n)$

Calculating the field: O(hn)

STILL NOT FINE ENOUGH

The attraction field method failed
Gravitational attraction is ruled by close objects
Even though the milky way dataset has this distribution:

Approximate large far-away clusters as a single point

Using oct-trees

The oct-tree implementation is based on "Parallel construction of quadtrees and quality triangulations"

- 1. Interleave the bits of the fixed-point float coordinates
- 2. Sort the list

Octant 4

The oct-tree implementation is based on "Parallel construction of quadtrees and quality triangulations"

3. From this list, the tree can be built in a straightforward manner

Total complexity: O(n log(n))

4. Nice GPU optimization step

We have the points ordered spatially

i.e. points following the same path through the tree

Use these for selecting kernel blocks

⇔ arbitrary ordering from original file read

Accuracy: when do we approximate tree nodes as a single cluster? Heuristic rule: point is not in the twice-as-wide cube

UNIVERSITY

The resulting approach is translated well to GPU

Milliseconds per frame vs. number of points

Much faster than full-on calculations!

The resulting simulation is close to the full-on simulation For the Milky Way/Andromeda cluster collision.

mean error ~1,5% stddev error ~1%

OUT OF MEMORY PROBLEMS

Two possible problems:

- Memory constraint
- CUDA kernel runtime (max 5s)

SPLIT UP DATASETS INTO SEGMENTS

Or, a positive reason:

- Multiple GPUs available

OUT OF MEMORY PROBLEMS

Forces are additive, so:

 Make a separate tree for each segment of points one kernel per segment

2) Calculate the attractions of each tree on each segment one kernel per segment per tree

